齊藤 国靖 Kuniyasu Saitoh

京都産業大学 理学部准教授※助成決定当時

2021稲盛研究助成理工系

採択テーマ
多分散粒子系の階層構造に起因する特異な粘弾性と弾塑性および新しい数理物理学の展開
キーワード
研究概要
コロイドや粉体など、巨視的な大きさをもつ「ソフト粒子」は自然界の至る所に存在し、そのレオロジーや力学特性を理解することは工学や産業において重要です。一般に、ソフト粒子は巨視的な粒子群であるため、熱的な揺動力の影響は受けず、力学的な非弾性力や粘性力によって運動エネルギーを散逸すると言われています。また、高密度状態においてランダムな粒子配置をとることが多く、系全体の変形(アフィン変形)に対し、空間的に不均一な応答を示します。これらの複雑な性質のおかげで、ソフト粒子は物理学の対象としても研究され、非平衡系やソフトマターの物理の発展に大きな役割を果たしてきました。ところで、自然界に存在するソフト粒子の中には、大小様々な大きさが混ざった「多分散性」をもつものもあります。例えば、断層中の土砂の粒径分布は冪分布であることが知られており、滑りや地震との関係など、マクロなレオロジーや力学特性との結びつきには未解明な点が沢山あります。本研究では、この様なソフト粒子の多分散性に注目し、粒径の分布や階層構造を軸として、マクロな粘性・弾性・塑性といった基本性質の理解を目指します。とりわけ、分子動力学シミュレーションを駆使し、ミクロな視点からの定量的な予測や実験結果との対応を重視した取り組みを行います。

ひとこと

ソフト粒子の研究は、まだまだ新しい切り口が沢山あると考えています。物理や数値シミュレーションを使って、日々異なる見方や考え方をするのが楽しみです。

研究成果の概要

 本研究の最初の成果は粒子間に接線力が働く場合の線形応答に関するものである。ここでは、擬二次元的に配置した球形粒子を考え、粒子間に接線方向の弾性力を導入する。粒子が平衡位置の周りで微小振動する場合を調べるため、クーロン摩擦など塑性的な変形は考慮しない。これにより、各粒子の回転自由度を加えたダイナミカル・マトリックスを計算することができ、微小なせん断変形に対する粒子系の剛性率の表式が得られる。但し、剛性率の表式はダイナミカル・マトリックスの固有値と固有ベクトルを含んでおり、ダイナミカル・マトリックスの各要素は粒子の平衡位置を与えて初めて決定される。従って、分子動力学法で求めた粒子位置を使ってダイナミカル・マトリックスの各要素を決定し、数値的に固有値と固有ベクトルを求めることで剛性率を計算した。計算した剛性率は分子動力学法で直接求めた剛性率とほぼ100%一致し、数値データのインプットが必要ではあるものの、粒子系の剛性率を理論的に予測することに成功した。また、定常せん断下における粒子系の応力についても同様の解析を行い、急激な応力降下(アバランチ)が起こる場合を除き、分子動力学法による数値計算の結果をほぼ100%説明することができた。

 本研究の次の成果は粒子系の応力降下(アバランチ)に関するものである。アバランチ現象はナノスケールの物体からマクロなスケールの物体まで普遍的に観測され、応力降下の大きさは同一の指数を持った冪分布に従うとされている。地震もアバランチ現象の一種で、これまで多くの理論的・数値的研究が行われてきたものの、実測されるアバランチの統計則と数値計算の結果には一定の隔たりがあった。そこで、分子動力学法によって粒子系のせん断変形をシミュレートし、接触する粒子間に働く摩擦力の効果に注目して研究を行った。その結果、摩擦のない数値計算では見過ごされていた小さなアバランチが重要な役割を果たし、応力降下の大きさの分布や様々な統計則が実測や理論的な予測に近づくことを明らかにした。この研究成果は学術誌The European Physical Journal Eの論文として掲載されると同時に、学術誌の表紙にも取り上げられた(図)。



http://dx.doi.org/10.1140/epje/s10189-021-00089-8


 


領域が近い研究者を探す

理工系領域